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Tunable vibration neutralizers are currently used to control harmonic vibration of
structures at the point at which they are attached, and the way in which the characteristics of
the neutralizers in#uence their e!ectiveness in this role are reasonably well understood.
However, the use of tunable vibration neutralizers to control global vibration of a structure
has not been so well explored, and the aim of this paper is to investigate the parameters of
the neutralizer that in#uence the control of the vibrational kinetic energy of a structure. It
is shown that in general a de-tuned rather than a tuned vibration neutralizer is required
at most frequencies, o!ering a sti!ness-like or a mass-like impedance to the structure.
However, because this control strategy requires a measure of the global vibration of the host
structure, which can be di$cult and/or costly in practice, it is preferable to use a tuned
vibration neutralizer. For this to be e!ective it is demonstrated that the tuned neutralizer
needs to be appropriately positioned on the structure. If this is the case then such a device
can be almost as e!ective as a de-tuned neutralizer over quite a wide range of frequencies. An
expression to determine the optimum ratio of the neutralizer mass to the modal mass of the
structure is also derived.
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1. INTRODUCTION

Since the vibration absorber was described by Ormodroyd and den Hartog in 1928 [1], it
has been used in many applications [2]. Although many researchers and engineers still call
it the vibration absorber, it has been called a vibration neutralizer by others, for example
references [2, 3], and it is referred to by this name in this paper. A fairly recent development
has been to make the device adaptive, by making the sti!ness adjustable, so that it can track
changes in the excitation frequency [4}7], and ways of achieving this have been reviewed by
Von Flotow et al. [5] and Brennan [8]. One application of this device that is worthy of
mention is the control of transmitted vibration from the engine of a DC9 aircraft to the
fuselage and hence a reduction in sound pressure inside the cabin [9]. These types of
systems, called adaptive}passive by Franchek et al. [10], are an attractive alternative to
passive vibration control. They o!er an improved performance over passive measures, and
provide a solution, which although does not match that of active control, can potentially
work with a very simple control system, such as that described by Long et al. [11].
Additionally, because the devices are used at resonance, large forces can be generated,
and the only power required is to tune the system, which can be very small. This has
obvious bene"ts with large structures [12]. Buhr et al. [13] investigated the use of a
tuned neutralizer to control vibration at a point other than the attachment point (non-co-
located control), but did not look at the e!ect of position on the global vibration of
a structure.
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More recently, researchers have turned their attention to the use of vibration neutralizers
to control sound transmission through structures, for example references [14, 15], with the
particular application of controlling sound transmission into aircraft in mind. It was found,
in this case, that it was preferable to use de-tuned vibration neutralizers rather than
resonant devices to reduce the global sound pressure level inside the cabin [16]. Charette
et al. [17] showed in an experimental investigation that detuned vibration neutralizers were
e!ective in reducing sound radiation from a panel over a frequency range. To achieve this in
practice requires a measure of global vibration, which can require a number of sensors to
measure the global vibration or sound pressure, and then the use of vibration neutralizers
becomes less attractive. The aims of this paper are twofold (i) to investigate, using a simple
structure, the conditions under which a tuned vibration neutralizer would be appropriate to
control the global vibration of the structure, and (ii) to determine the optimum parameters
of a tuned neutralizer used for global vibration control. If the right conditions can be
arranged so that a tuned neutralizer rather than a detuned neutralizer can be employed then
a simple control strategy can be used [11], and this makes the use of such a resonant device
an attractive alternative.

The paper is organized as follows. Following the introduction, section 2 describes
a mathematical model, in the modal domain, of the structure and the neutralizers in terms
of receptances and dynamic sti!nesses. To gain physical insight into the control
mechanisms a simpli"ed model is developed in section 3 that uses only a single tunable
vibration neutralizer. This model is used to investigate the e!ect of the position of the device
on the controllability of the host structure as a function of frequency. It is shown that the
global vibration of the structure reduces as the tuned dynamic sti!ness of the neutralizer
increases, but there is a threshold value beyond which no further reductions can be
achieved. A general expression to calculate this threshold value is derived. In section 4,
a technique used to calculate the optimum secondary force in a fully active control system,
is employed to calculate the optimum dynamic sti!ness of a vibration control device that
minimizes the kinetic energy of the structure. Using this technique, it is clear that a de-tuned
neutralizer is required to achieve the minimum global vibration of the structure. The e!ect
of using a tuned, rather than a de-tuned vibration neutralizer is compared with the
optimum control strategy and the frequency range when this is acceptable is identi"ed.
Finally, the paper is closed with some conclusions in section 5. There is also Appendix A to
this paper which describes the matrix algebra required to simplify the mathematical model
of a structure with a single neutralizer attached.

2. MATHEMATICAL MODEL OF A STRUCTURE WITH
NEUTRALIZERS ATTACHED

Consider a structure that can be modelled using M structural modes and has N neutralizers
attached, such as the one shown in Figure 1. The structure and the neutralizers can be
modelled separately and then coupled together using the receptance-dynamic sti!ness
approach [2]. The displacement of the structure w at position x can be written as
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Figure 1. N Neutralizers of dynamic sti!ness k
n
attached to a structure which has M modes.
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and f
m

is the generalized force of the mth mode. m
m

is the modal mass, f
m

is the damping
ratio and u

m
is the circular natural frequency of the mth mode, respectively. The generalized

force of this mode has two contributions, a primary uncontrolled force g
m

and the forces
applied by the N neutralizers. Thus, the mth modal amplitude is given by
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where x
n

denotes the position on the structure at the nth neutralizer and f
n

is the force
applied to the structure by the nth neutralizer. The vector of modal amplitudes can thus be
written as

q"A[g#Uf ], (4)

where q and g are the M-length modal amplitude and generalized primary force vectors,
respectively, A is an (M]M) diagonal matrix whose elements are given by equation (2), U is
the (M]N) matrix of modal amplitudes where the entry /

mn
is the modal amplitude of the

mth mode evaluated at the nth neutralizer position, and f is the N-length vector of forces
applied to the structure by the neutralizers.

The force applied to the structure by the nth neutralizer can be written in terms of the
dynamic sti!ness of the neutralizer and the displacement of the structure at the neutralizer
position as
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where k
n
is the dynamic sti!ness of the nth neutralizer and is given by [11]
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with m
n
is the mass, f

n
is the damping ratio and u

n
is the circular natural frequency of the nth

neutralizer respectively. Substituting for w(x) from equation (1) into equation (5) gives the
nth neutralizer force in terms of the modal amplitudes of the structure:
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Thus, the vector of neutralizer forces applied to the structure is given by

f"!KUTq (8)
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where K is the (N]M) diagonal matrix of neutralizer dynamic sti!nesses whose elements
are given by equation (6), and T denotes the transpose. Combining equations (4) and (8)
gives the coupled matrix equation for the complete system:

q"[I#AUKUT]~1Ag, (9)

where I is the identity matrix. The time-averaged kinetic energy E, of the structure is taken
as the measure of global vibration of the structure and is proportional to the sum of the
squares of the modal velocity amplitudes. For a beam it is given by [18]

E"

mu2

4
qHq, (10)

where m is the mass of the beam and the superscript H denotes the Hermitian transpose.

3. GLOBAL CONTROL USING A SINGLE TUNABLE
VIBRATION NEUTRALIZER

Considering only one neutralizer attached to the structure, equation (9) becomes
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where k
n
is the dynamic sti!ness of a single neutralizer given by equation (6) and /(x

n
) is the

vector of mode shapes evaluated at the neutralizer position. This equation can be written in
a simpli"ed form, without an inverted matrix, using the procedure detailed in Appendix
A as
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where a
nn

is the point receptance of the structure at the point where the neutralizer is
attached and is given by
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If the uncontrolled primary excitation is a single-point force applied at position x
f
,

equation (12) can be further simpli"ed to
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where a
nf

is the transfer receptance between the primary force and the neutralizer position
and / (x

f
) is the vector of mode shapes evaluated at the primary force position. To examine

the di!erences between global and local control using a single neutralizer the cantilever
beam shown in Figure 2(a) is used as an example structure, where m, k and c are the mass,
sti!ness and damping coe$cient of the neutralizer respectively. Because the vibration
neutralizer is tunable, the spring sti!ness can be adjusted as shown in the "gure. If an



Figure 2. Cantilever beam of length ¸ with (a) a tunable neutralizer attached at the free end, and (b) an
equivalent variable viscous damper attached.

GLOBAL CONTROL OF VIBRATION 589
aluminium cantilever beam of dimensions 0)5 m]5 mm]55 mm, is excited by a point force
at x/¸"0)2 and the neutralizer is tuned to a "xed frequency of 125 Hz, then the kinetic
energy of the beam with and without the neutralizer attached is shown in Figure 3. The
characteristic dip (marked A) in the kinetic energy can be seen at 125 Hz with a peak on
either side of the dip. Calculating the dip in the kinetic energy of the beam at each frequency,
with the neutralizer tuned so that it is resonant at each single frequency, then the resulting
plot is shown in Figure 4, with the kinetic energy of the beam alone for comparison. It can
be seen from this graph that although there is a reduction in the kinetic energy at some
frequencies, at other frequencies the tuned neutralizer actually causes an increase in global
vibration. This has been observed by Fuller et al. [16] in the control of sound transmission
through structures, which is also a global control problem. The reason for this can be seen
by examining the tuned dynamic sti!ness of the neutralizer. Setting u"u

n
and assuming

that damping is small, i.e., f
n
@1, then from equation (6), the dynamic sti!ness of the tuned

frequency is given by
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Figure 3. Kinetic energy of a cantilever beam with a neutralizer tuned to 125 Hz and attached to the free end of
the beam. Point A denotes the kinetic energy of the beam at the tuned frequency of the neutralizer.
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At each frequency, this is equivalent to attaching a damper, which is grounded at one end, to
the beam as shown in Figure 2(b). The equivalent damping coe$cient is given by

c
eq
"

um
n

2f
n

. (16)

It can be seen that this equivalent damping coe$cient increases with mass and frequency
and decreases with damping ratio. At frequencies when the e!ect of the tuned vibration
neutralizer is most detrimental (about 85 and 290 Hz in Figure 4) the dynamic sti!ness of
the damper is much greater than the dynamic sti!ness of the beam at the point where it is
attached, and this results in a pinning of the beam at these frequencies. The resulting
structure has natural frequencies at these frequencies and hence the tuned vibration
neutralizer has no bene"cial e!ect. Indeed its e!ect is to create a structure that has natural
frequencies which coincide with the forcing frequency. In this case, it is better to de-tune the
neutralizer as suggested by Fuller et al. [16], so that it appears mass- or sti!ness-like. The
problem with a de-tuning control strategy, however, is that the kinetic energy of the host
structure needs to be measured, which entails distributed measurements over the whole
structure to obtain a measure of the global vibration. It would be preferable to tune the
neutralizer so that it was resonant because this means that a simple control algorithm could
be employed that uses only acceleration signals at the base of the neutralizer and on the
neutralizer mass, as discussed by Long et al. [11].

To investigate the parameters that govern the large response when the neutralizer
is tuned equation (11) can be arranged and the forcing term set to zero, (i.e., examine
the free response of the combined system with neutralizer tuned at each frequency) to
give

[I#k A/ (x )/T(x )]q"0. (17)

n(tuned) n n



Figure 4. Kinetic energy of the cantilever beam without and with the neutralizer attached and tuned to be
resonant at each frequency.
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This will have natural frequencies when the determinant of the matrix is set to zero, i.e.,
when

1#k
n (tuned)

a
nn
"0. (18)

At the frequency of interest k
n(tuned)

A0, which means that a
nn
P0. Thus, the zeros of the

point receptance, measured at the position where the neutralizer is attached, indicate the
frequencies at which a tuned neutralizer cannot e!ect global control of the structure. Figure
5 shows the free-end point receptance of the beam pictured in Figure 2(a) without the
neutralizer attached. The poles of this frequency response function are the natural
frequencies of the beam without the neutralizer attached that are excited by a point force at
the neutralizer position, and the zeros indicate the problematic frequencies for that
neutralizer position. It is known that the zeros of receptance are a function of position on
the structure [19], and hence the frequencies at which global control cannot be achieved
with a tuned neutralizer are dependent upon where the neutralizer is placed on the
structure. Figure 6 shows the e!ect of changing the neutralizer position on the natural
(problematic) frequencies of the combined system. The o and * are the "rst and second
natural frequencies of the beam, respectively, it is pinned at the neutralizer position.

The above analysis shows that provided that neutralizer is positioned correctly on the
structure, it can be tuned to be a resonant device and hence global control of the structure
can be achieved at a single frequency using a locally controlled tunable neutralizer. The
question as to whether this control is optimal is addressed in the next section, but it is clear
that provided some simple measurements are taken before "tting a tunable vibration
neutralizer to ensure correct placement of the device, then a simple control system can
potentially be used.

The e!ect of changing the position of the neutralizer can be seen in Figure 7. This "gure
shows the way in which the kinetic energy of the third mode of a cantilever beam, excited at
position x/¸"0)2, at the beams third natural frequency, by a point force, changes as
a function of its position and the ratio of mass of the neutralizer to the beam, k. It is clear



Figure 5. Point receptance of the free-end of the cantilever beam. A*natural frequencies of the beam without
the neutralizer attached; B*natural frequencies of the beam pinned at the neutralizer position (free end).

Figure 6. Graph showing how the natural frequencies of the combined system (with nodal points at the position
of the neutralizer) change with the non-dimensional position of the neutralizer on the cantilever beam.
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that the reduction in kinetic energy is a function of both mass ratio and position. Some
general observations are

f a neutralizer placed at a nodal point on the host structure has no e!ect,
f a neutralizer generally becomes more e!ective as it is placed closer to the source,
f at some positions there appears to be a threshold mass ratio, beyond which there is no

improvement in performance (for example at x/¸"1).



Figure 7. Change in kinetic energy of the beam as a function of non-dimensional position of the neutralizer on
the cantilever beam. The beam is excited at its third natural frequency at x/¸"0)2.
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To investigate these e!ects equation (14) is examined under certain conditions. If the
neutralizer is tuned to be resonant so that Dk

n
DA1 and the frequency of interest is not close to

a zero of the point receptance a
nn

then

Dk
n
a
nn

DA1 (19)

and equation (14) becomes
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which can be substituted into equation (10) to determine the minimum kinetic energy of the
structure. Inspection of equation (20) shows that provided the condition given in equation
(19) holds, then surprisingly the kinetic energy of the host structure is independent of the
dynamic sti!ness of the tuned neutralizer. If the neutralizer is placed at the excitation
position then the subscript f becomes n and q

min
"0, which means that the kinetic energy of

the beam can, in principle, be set to zero. It is possible to determine an expression for the
optimum dynamic sti!ness of the neutralizer provided attention is restricted to a frequency
close to the mth natural frequency of the original structure. In this case the response is
governed by the amplitude of the mth mode which can be determined from equation (14)
and is given by
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Normalizing this to the modal amplitude of the structure without the neutralizer
attached, and substituting for A

m
with u"u

m
, and the tuned dynamic sti!ness k

n(tuned)
,



Figure 8. Change in the kinetic energy of the beam at the third natural frequency as a function of mass and
damping ratios: A*actual change in the kinetic energy; B and C are asymptotes for high and low k

m
/f

n
ratios

respectively.
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gives
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It is clear that this mode reduces in amplitude as the mass ratio increases, and the damping
in the neutralizer and the structure decrease. The positional dependence is also apparent;
the neutralizer is most e!ective if it positioned on an antinode, and is ine!ective if it is placed
on a node. Equating the kinetic energy calculated using equations (21) and (10) with the
kinetic energy calculated using equations (20) and (10) with u"u

m
and k

n
"k

n(tuned)
, the

optimum tuned dynamic sti!ness of the neutralizer can be determined:
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is the ratio of the mass of the neutralizer to the mass of the mth
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The change in the kinetic energy of the cantilever beam pictured in Figure 2(b), excited at its
third natural frequency is shown in Figure 8 as a function of the mass ratio divided by the
neutralizer's damping ratio. The beam is excited at x/¸"0)2 and the neutralizer is
positioned at the free-end and has a mass ratio of 0)1; the beam and neutralizer damping
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ratios are set at 0)001. The actual change in the kinetic energy was calculated using equation
(10) and equation (14), and is labelled A; the normalized minimum kinetic energy was
calculated using equation (10) and equation (20) normalized by the kinetic energy of the
third mode, and is labelled B; the sloping line was calculated using equations (10) and (22)
with the 1 in the denominator neglected, and is labelled C. The optimum ratio k

m
/f

n
was

calculated using equation (24). It can be seen that this is quite a good approximation, and is
thus considered useful in the design of a vibration neutralizer for a particular structure. It is
interesting to note that as the neutralizer is moved closer to the source the maximum
reduction in the kinetic energy increases. However, to achieve the maximum reduction, the
optimum k

m
/f

n
ratio increases, which means that either the mass of the neutralizer has to

increase or the damping in the neutralizer has to decrease.
It is tempting to reduce the damping in the neutralizer, because adding mass in

a vibration control device is usually not encouraged. However, it is well known that the
separation between the peaks on either side of the operating frequency is governed by the
mass ratio [2], and clearly it is desirable to have a &&reasonable'' peak separation so that the
system is reasonably robust to rapid changes in excitation frequency as discussed by
Brennan [4]. To derive an expression for this peak separation, k

n
from equation (6) is

substituted into equation (21) for, with damping in the structure and the neutralizer both set
to zero. Setting u

n
"u

m
, gives
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where X"u/u
m
. The frequencies at which the peaks occur can be determined by setting the

denominator of equation (25) to zero. This results in a quadratic equation with the
solutions:
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Forming the di!erence DX"X
1
!X

2
and substituting the two roots from equation (26),

gives, after some algebraic manipulation

DX"D/
m
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) Dk1@2

m
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Thus, by using equations (24) and (27) the optimum neutralizer mass and damping ratio can
be determined for global vibration control once a tolerable peak separation has been
de"ned, and this will be dependent upon the control delay in the neutralizer as discussed by
Brennan [4].

4. COMPARISON BETWEEN ACTIVE CONTROL AND CONTROL USING
A TUNABLE VIBRATION NEUTRALIZER

In this section global control of vibration is compared using the following: (a) a passive
device with no restrictions on the passive elements (optimal passive control), (b) a tunable
vibration neutralizer, and (c) fully active control, utilizing the theory described by Nelson
and Elliott [20] for the active control of sound. The problem is formulated with the
attached dynamic sti!ness of the control device being the control variable. With strategy (a),
the imaginary part of the dynamic sti!ness is constrained to be positive, so no energy is
supplied by the control device, with strategy (b) the imaginary part is constrained to be



Figure 9. Optimal dynamic sti!ness of the neutralizer as a function of frequency, (a) is the real part: - - - mass;
** sti!ness and (b) is the imaginary part: - - - supply energy; ** absorb energy. Solid line*positive; dashed
line*negative.
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positive and the real part is set to in"nity, and with strategy (c), there are no constraints on
the dynamic sti!ness as it can supply and absorb energy.

Equation (14) can be written as

q"d#CA
k
n

1#k
n
a
nn
B , (28)

where

d"A/(x
f
) f and C"!A/ (x

n
)a
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f . (29a, b)

When equation (28) is substituted into equation (10) to give the kinetic energy, the resulting
equation is of Hermitian quadratic form, which has a minimum when [20]

k
n(opt)

"

![CHC]~1CHd

1#a
nn

[CHC]~1CHd
(30)

and the minimum kinetic energy can be found by setting k
n
to k

n(opt)
in equation (28), which

in turn is substituted into equation (10). The optimum dynamic sti!ness has real and
imaginary parts which are plotted in Figures 9(a) and (b), respectively, for the cantilever
beam used in the earlier simulations with the dynamic sti!ness placed at the free-end of the
beam. It can be seen that both the real and imaginary parts are both positive and negative
depending upon frequency. The interpretation of these graphs is as follows. The real part of
the dynamic sti!ness is related to the reactive passive elements of mass and sti!ness.
A positive real part is means that the dynamic sti!ness should be sti!ness-like, and
conversely a negative real part corresponds to a mass-like dynamic sti!ness, and this is
shown in Figure 9(a). If the real part of the optimum dynamic sti!ness is in"nite then this



Figure 10. Comparison of the kinetic energy of the cantilever beam between optimal passive control and control
using a tuned vibration neutralizer tuned at each frequency.
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corresponds to a vibration neutralizer, and if it is zero then this corresponds to no mass or
sti!ness. The imaginary part of the dynamic sti!ness corresponds to damping. If it is
positive then this means that the device should absorb energy, and if it is negative then it
should supply energy to the structure. It can be seen from Figure 9(b) that at some
frequencies then energy needs to be supplied to the beam, but at other frequencies the device
should absorb energy. However, it should be noted that the imaginary parts of the dynamic
sti!ness are several orders of magnitude less than the real part, and when it is set to zero for
the example considered in this paper, it makes little di!erence to the resulting kinetic energy
of the beam. Thus, it can generally be seen that if an active control system is used to control
global vibration, then at most frequencies it e!ectively has to synthesize an attached mass or
a sti!ness. At certain frequencies it has to synthesize a tuned vibration neutralizer or
nothing at all.

From these simulations it is clear why a de-tuning control strategy has been used to
control global vibration. However, this is not a simple strategy to implement in practice, as
discussed above, and so it is worthwhile to see how e!ective a tuned vibration neutralizer is
compared with optimal control, but with the imaginary part of the dynamic sti!ness
constrained to be positive. Figure 10 shows the kinetic energy of the cantilever beam
calculated at each frequency with the two control strategies implemented; the kinetic energy
before control is also shown. It can be seen that the constrained optimal control strategy
reduces the kinetic energy at most frequencies, and never makes the situation worse. The
best control is achieved around the original resonance frequencies of the beam, and there
are some frequencies when no control is possible. It is also clear that although the tuned
vibration neutralizer is e!ective at some frequencies, it makes global vibration worse at
other frequencies, as discussed previously. Dividing the kinetic energy of the beam with an
optimally controlled device attached by the kinetic energy of the beam with an optimally
controlled device attached by the kinetic energy of the beam with a tuned (at each single
frequency) neutralizer attached, the frequency range over which the tuned neutralizer is
e!ective can be clearly identi"ed. This is shown in Figure 11. There are large frequency



Figure 11. Ratio of the kinetic energy of the beam with optimal passive control to the kinetic energy of the beam
controlled with a neutralizer, tuned at each frequency.
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ranges, for example from about 120}220 and 340}500 Hz where the tunable vibration
neutralizer's e!ectiveness is within 3 dB of the optimal passive control. These frequency
ranges can be adjusted by careful choice of neutralizer position as discussed in section 2.
Thus, it is possible to use a resonant vibration neutralizer tuned using a local control
strategy to control the global vibration of a structure. This control strategy, although
sub-optimal, gives results that are very similar to a de-tuning control strategy, which
requires a more sophisticated control system.

5. CONCLUSIONS

In this paper the use of a tunable vibration neutralizer has been investigated for the
control of global vibration of a structure. A general mathematical model has been
developed for a structure with many vibration neutralizers attached, but to gain some
physical insight into the control mechanisms a beam with a single device attached has been
studied. With local vibration control, where the aim is for the vibration neutralizer to pin
the structure at the point of attachment, the dynamic sti!ness of the neutralizer is required
to be as large as possible. However, with global control the required dynamic sti!ness of the
neutralizer has an optimum (threshold) value, beyond which any increase does not result in
improved performance, and an expression for this optimum value has been derived. A tuned
vibration neutralizer can, at some frequencies, result in an increase rather than decrease
in global vibration. These frequencies are the natural frequencies of the host structure
when it is pinned at the neutralizer attachment point. If these natural frequencies
coincide with a frequency of interest then they can be shifted to other frequencies by
changing the position of the neutralizer. It has been shown that by correctly positioning the
neutralizer it can be tuned to be a resonant device and e!ect global control of the structure,
that o!ers a performance within 3 dB of that achievable with an optimal passive control
device.
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APPENDIX A

In this Appendix it is shown that
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When there is only a single neutralizer, / is an M-length vector, A is an (M]M) diagonal
matrix and k

n
is a scalar. Thus, the matrix [k
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eigenvalues of [I#k
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the Cayley}Hamilton theorem [21] can be used to write
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where the c1s are the coe$cient of the characteristic equation of the matrix Z, which is given
by
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The resulting coe$cients of the characteristic equation are
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Rearranging equation (A3), multiplying by Z~1 and setting p"2, gives

Z~1"
(!c

1
I!Z)

c
2

, (A6)

Substituting for Z from equation (A2) and c
1

and c
2

from Equations (A5a,b) into equation
(A6) gives equation (A1) as required.
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